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Introduction

A set of agents A = {1, . . . , n}

A facility that can serve multiple agents

Cost of serving S ⊆ A is c(S)

Valuation vi for each agent

Valuations are private knowledge
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Introduction

Each agent announces bi (possibly bi 6= vi )

Mechanism: Decide

(i) set O(b) to be serviced
(ii) payment pi (b) for each agent

Utility of agent i :

vi · ai (b)− pi (b),

where ai (b) = 1, iff i ∈ O(b) and ai (b) = 0 otherwise
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Axioms of Cost-sharing

Volunetary Participation (VP):
Non-negative utilities

Non Positive Transfer (NPT):
Non-negative payments

Consumer Sovereignty (CS):
Guaranteed service for any agent i given high bi
(more than some b∗i ∈ R)

Group-strategyproofness (GSP):
No coalition can benefit by misreporting
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Cost Sharing Schemes

Definition

A cost sharing scheme is a function ξ : A× 2A → R+ ∪{0},
s.t. ξ(i , S) > 0⇒ i ∈ S .

Definition

A cost sharing scheme ξ is α-budget balanced for c iff for
all S ⊆ A, αc(S) ≤

∑
i∈S ξ(i , S) ≤ c(S).

Definition

A cost sharing scheme ξ is cross monotone iff for all
S ,T ⊆ A and i ∈ S : ξ(i , S) ≥ ξ(i , S ∪ T ).
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Moulin Mechanism

Algorithm 1 Moulin Mechanism
Require: cross monotone ξ, vector b

S ← A
repeat

S ← {i ∈ S | bi ≥ ξ(i , S)}
until ∀i ∈ S , bi ≥ ξ(i , S)}
Service S and charge each agent ξ(i , S)

Theorem ([1])

Moulin Mechanism is GSP.
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Proof Sketch

Definition

Given a bid vector b a set S is feasible iff ∀i ∈ S , bi ≥ ξ(i , S).

Lemma

If ξ is cross monotone, then there is a unique maximal
feasible set. This set is also the outcome of Moulin
mechanism.

A successful coalition targets feasible outcomes

All feasible sets are subsets of the current outcome

No utility gain!
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Submodular Cost

Definition

A cost function c is submodular iff for all S ,T ⊆ A:

c(S ∪ T ) + c(S ∩ T ) ≤ c(S) + c(T ).

Theorem ([2])

For every submodular cost function c there is a 1-budget
balanced cross monotone cost sharing scheme.
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Limitations of cross monotonicity

Problem Lower bound
Edge-cover 1

2
[3]

Set-cover 2√
n

[3]

Vertex-cover 2
n1/3

[3]
Facility Location 1

3
[3]

Steiner Forest 1
2

[4]
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Beyond Cross monotonicity

Is cross monotonicity necessary?

ξ 1 2

{1, 2} 10

{1}/{2} 10 10

Algorithm 2 GSP mechanism for ξ

S ← ∅
if b1 > ξ(1, S ∪ {1}) then

S ← S ∪ {1}
end if
if b2 ≥ ξ(2, S ∪ {2}) then

S ← S ∪ {2}}
end if
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Partial Characterization

Theorem ([3])

Every GSP mechanism defines a cost sharing scheme

Definition

A cost sharing scheme ξ is semi-cross monotone iff for all
S ⊆ A and i ∈ S , either

∀j ∈ S \ {i}: ξ(j , S) ≥ ξ(j , S \ {i}) or

∀j ∈ S \ {i}: ξ(j , S) ≤ ξ(j , S \ {i}).

Theorem ([3])

The cost-sharing schemes that give rise to GSP mechanisms
are semi-cross monotone.
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Proof Sketch

1 ξ(j , S \ {i}) > ξ(j , S) and ξ(k, S \ {i}) < ξ(k ,S)

2 Two possible outcomes S \ {i} and S with player i indifferent

3 Player i can bid high to help k

4 Player i can bid low to help j

5 Always a coalition!
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Partial Characterization

Is semi-cross monotonicity sufficient?

ξ 1 2

{1, 2} 20 20

{1}/{2} 10 10

ξ semi-cross monotone

No GSP mechanism for ξ

Challenge: Find a complete characterization of GSP cost
sharing schemes
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Fence Monotonicity

Definition

Given L,U ⊆ A and i ∈ U let

ξ∗(i , L,U) = min
L∪{i}⊆S⊆U

ξ(i , S).

Remark

For ξ cross monotone: ξ∗(i , L,U) = ξ(i ,U).
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Fence Monotonicity

First Condition

There must be some S , where L ⊆ S ⊆ U such that for all
i ∈ S , ξ(i , S) = ξ∗(i , L,U).

For cross monotone ξ, set S = U.

Cross monotone ⇒ First Condition

Equivalent with semi-cross monotonicity for |U \ L| = 1

Fence monotone ⇒ Semi-cross monotone
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Fence Monotonicity

Second Condition

For every i ∈ U \ L, there must be some Si , where
L ⊆ Si ⊆ U and i ∈ Si such that for all i ∈ Si \ L,
ξ(i , S) = ξ∗(i , L,U).

For cross monotone ξ, set Si = U.

Cross monotone ⇒ Second Condition

For |U \ L| = 2 : if ξ(i ,S \ {j}) < ξ(i , S) then
ξ(j ,S \ {i}) ≤ ξ(i ,S)
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Fence Monotonicity

Third Condition

If for C ⊂ U , there is j ∈ C with ξ(j ,C ) < ξ∗(j , L,U) then
∃T ⊆ L \ C s.t. ∀i ∈ T , ξ(i ,C ∪ T ) = ξ∗(i , L,U).

Cross monotone: if condition always false

Cross monotone ⇒ Third Condition

For |U \ L| = 1

1 if ξ(i ,S \ {j}) < ξ(i ,S):
ξ(j ,S \ {i}) ≥ ξ(i ,S) ⇒ ξ(j ,S \ {i}) = ξ(i ,S)

2 if ξ(i ,S \ {j}) < ξ(i ,S) and ξ(k,S \ {i}) < ξ(k,S):
ξ(k,S \ {j}) ≤ ξ(i ,S \ {i})
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Necessity

Theorem ([5])

Every cost sharing scheme gives rise to GSP mechanism is
fence monotone.

Proof Sketch.

Induction on |U \ L|; Base trivially satisfied

Define harm relation iff ξ(i , L,U) > ξ(i , L ∪ {j},U)

Induction hypothesis (Property 3) ⇒ harm relation strict
partial order

Important: existence of sinks!
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Proof Sketch (cont.)

First Condition

Ind. hyp. cond 1. and GSP ⇒ Alloc. prop. A
Alloc. prop. A ⇒ Ind. St. Cond. 1

Second Condition

Ind. hyp. Cond. 1 ⇒ Ind. St. cond. 2 (sinks)
Ind. hyp. Cond. 2 and GSP ⇒ Ind. St. Cond. 2 (rest)

Third Condition

Alloc. prop. A and GSP ⇒ Alloc. prop. C
Alloc. prop. C ⇒ Ind. Step cond. 2
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Stable pairs

Definition

L,U are stable at b, iff

1 ∀i ∈ L, bi > ξ∗(i , L,U)

2 ∀i ∈ U \ L, bi = ξ∗(i , L,U)

3 ∀R ⊆ A \ U, ∃i ∈ R: bi < ξ∗(i , L,U ∪ R)

Definition

Given two sets L,U and a bid vector b a valid tie breaking
rule σ(L,U , b) = S ∈ A satisfies: ξ(i , S) = ξ∗(i , L,U), for
all i ∈ S .
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Fencing mechanisms

Algorithm 7 Fencing mechanism
Require: Fence monotone ξ, valid tie-breaking rule σ for ξ,

and bid vector b
Find stable pair L,U
S ← σ(L,U , b)
return S

Theorem

Fencing mechanisms are GSP.
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Yielding Process

Algorithm 8 Yield Process
Require: ξ, vector b, set L

U ← A
repeat

U ← L ∪ {i ∈ U \ L | bi ≥ ξ∗(i , L,U)}
until ∀i ∈ U \ L, bi ≥ ξ∗(i , L,U)}
return U

Lemma

If L,U is stable at b, then L yields U.
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Proof Sketch

Lemma

Given a fence monotone ξ there is at most one stable pair
at each bid vector

Lemma

Given a fence monotone ξ, a Fence mechanism is GSP
between vectors with a stable pair

Definition

Let b∗i > maxS ξ(i , S) for i ∈ A. L = {i | bi ≤ b∗i } for each
b and U the set it yields.
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Proof Sketch (cont.)
Induction on |L| to prove that a stable pair exists; base trivial;

Induction step

1 Assumption: no stable pair

2 Let T ⊆ U \ L, s.t. i ∈ T ⇒ bi > ξ∗(i , L,U)

3 Li ,Ui stable pair at (b∗i , b−i ) i ∈ T

4 L ∪ {i} ⊆ Li ⊆ L ∪ T

5 Fence Mon. Cond. 2. ⇒ L ∪ {i} ⊂ Li

6 Let j ∈ Li \ (L ∪ {i}) (j ∈ T )

7 Uniqueness and GSP ⇒ Lj ⊂ Li

8 Contradiction!
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Budget Balance and Complexity

Theorem

There is no general GSP mechanism with constant approxi-
mation ratio. That is there are cost function families, where
every fence monotone ξ is at most 1

x
-budget balanced for

any x.

Theorem

Finding the stable pair of an input is no harder than comput-
ing the outcome of a GSP mechanism given polynomial-time
access to ξ∗(·, ·, ·).
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Open Problems

Prove lower bounds for interesting combinatorial problems

Construct new GSP mechanisms with better budget balance

Find the complexity of computing the outcome of a GSP
mechanism

Given a hardness result characterize GSP tractable
mechanisms

Characterize GSP mechanisms in other domains
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THANK YOU!

28 / 29
Group-strategyproof cost-sharing mechanisms

N



QUESTIONS?
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